Intendierte Lernergebnisse
Aim: Getting knowledge of the most important and well-known computational methods from Bayesian statistics, like Metropolis-Hastings-, Importance Sampling-, Gibbs Sampling-, INLA-, Neal-, Reversible-Jump Algorithm, and implementing and using those for a diverse set of statistical problems.
Lehrmethodik
Lectures and exercises. Presence is needed.
Inhalt/e
Bayes TheoremMetropolis-Hastings-AlgorithmGibbs-SamplingRevesible Jump AlgorithmINLA,Neal's Algorithm for nonparametric Dirichlet process priors.
Erwartete Vorkenntnisse
Bayesian Statistics and/or Decision TheoryLink auf weitere InformationenSkript in Moodle